14 research outputs found

    PEPRF : Identification of Essential Proteins by Integrating Topological Features of PPI Network and Sequence-based Features via Random Forest

    No full text
    Background: Essential proteins play an important role in the process of life, which can be identified by experimental methods and computational approaches. Experimental approaches to identify essential proteins are of high accuracy but with the limitation of time and resource-consuming. Objective: Herein, we present a computational model (PEPRF) to identify essential proteins based on machine learning. Methods: Different features of proteins were extracted. Topological features of Protein-Protein Interaction (PPI) network-based are extracted. Based on the protein sequence, graph theory-based features, in-formation-based features, composition and physichemical features, etc., were extracted. Finally, 282 features are constructed. In order to select the features that contributed most to the identification, Re-liefF-based feature selection method was adopted to measure the weights of these features. Results: As a result, 212 features were curated to train random forest classifiers. Finally, PEPRF get the AUC of 0.71 and an accuracy of 0.742. Conclusion: Our results show that PEPRF may be applied as an efficient tool to identify essential pro-teins

    Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7

    No full text
    Background: MicroRNAs are endogenous small noncoding RNAs that are functionally involved in numerous critical cellular processes including tumorigenesis. Data mining using a microRNA array database suggested that let-7d microRNA may be associated with renal cell carcinoma (RCC) malignant progression. Here, we performed further analyses to determine whether let-7d is functionally linked to RCC malignancy. Methods: Quantitative real-time PCR was used to determine the level of mature let-7d in RCC clinical specimens and its correlation with clinicopathological data. Immunohistochemical staining was conducted to characterize the stroma of RCC. Let-7d overexpressing RCC cell lines combined with mouse models bearing cell-derived xenografts and patient-derived xenografts were used to assess the functional role of let-7d in vitro and in vivo. Results: Downregulation of let-7d in clinical RCC samples was associated with advanced tumor grade and T stage and increased vascular invasion. An inverse relationship between let-7d expression and macrophage infiltration was found in clinical RCC samples. Functional studies indicated that ectopic expression of let-7d significantly inhibited RCC cell proliferation, migration, and peripheral blood monocyte (PBMC) recruitment in vitro, as well as tumor growth, metastasis, and tumor macrophage infiltration in vivo. In silico analysis and subsequent experimental validation confirmed collagen, type III, alpha 1 (COL3A1) and C-C subfamily chemokine member CCL7 as direct let-7d target genes. The addition of COL3A1 and CCL7 counteracted the inhibitory effects of let-7d on RCC cell proliferation, migration, and PBMC recruitment. The inhibition of let-7d increased cell proliferation, migration, and PBMC recruitment by the enhanced expression of COL3A1 and CCL7 genes in vitro. The mRNA levels of COL3A1 and CCL7 were inversely correlated with let-7d level in RCC clinical specimens. Conclusions: These results suggest that let-7d may suppress RCC growth, metastasis, and tumor macrophage infiltration at least partially through targeting COL3A1 and CCL7.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000342018600001&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Biochemistry & Molecular BiologyOncologySCI(E)[email protected]; [email protected]
    corecore